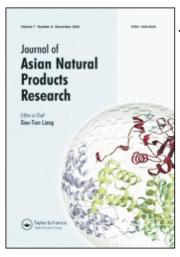
This article was downloaded by:


On: 22 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Journal of Asian Natural Products Research

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713454007

Phenolic glycosides isolated from the bark of *Lysidice brevicalyx* Wei

You-Cai Hu^a; Shuang-Gang Ma^a; Shi-Shan Yu^a; Xian-Fu Wu^a; Yong Li^a

^a Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

Online publication date: 15 June 2010

To cite this Article Hu, You-Cai , Ma, Shuang-Gang , Yu, Shi-Shan , Wu, Xian-Fu and Li, Yong(2010) 'Phenolic glycosides isolated from the bark of $Lysidice\ brevicalyx$ Wei', Journal of Asian Natural Products Research, 12: 6, 516 — 521

To link to this Article: DOI: 10.1080/10286020.2010.489818

URL: http://dx.doi.org/10.1080/10286020.2010.489818

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

ORIGINAL ARTICLE

Phenolic glycosides isolated from the bark of Lysidice brevicalyx Wei

You-Cai Hu, Shuang-Gang Ma, Shi-Shan Yu*, Xian-Fu Wu and Yong Li

Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China

(Received 7 December 2009; final version received 26 April 2010)

Two new compounds, lysidiside S (1) and 7-O-(+)-peltogynol- β -D-glucopyranoside (2), together with six known phenolic glycosides (3–8) were isolated from the bark of *Lysidice brevicalyx* Wei. The structures of these compounds were characterized by chemical and spectroscopic methods. The antioxidant activities of compounds 1–8 were evaluated, and compound 3 exhibited remarkable antioxidant activity at concentrations of 10^{-4} , 10^{-5} , and 10^{-6} mol/l.

Keywords: *Lysidice brevicalyx*; lysidiside S; 7-O-(+)-peltogynol- β -D-glucopyranoside; antioxidant

1. Introduction

Lysidice brevicalyx Wei belongs to the genus Lysidice in the family Fabaceae [1]. During our previous studies on bioactive constituents from the genus Lysidice, we obtained bioactive stilbenes, phloroglucinols, flavanoids, and lignans [2-9]. Recently, a procedure based on biological and chemical screening has been used to investigate the antioxidant constituents from the bark of L. brevicalyx, and seven new stilbene glycosides were obtained from an antioxidant fraction (Fr. C_{2-3}) [10]. As part of our continuing program for targeted isolation of novel bioactive constituents from a natural source, we carried out an investigation of constituents of other subfractions from the title plant. Eight compounds, 1–8 (Figure 1), including one new stilbene glycoside (1), one new flavanol glycoside (2), and six known compounds were isolated. The antioxidant capacity of compounds 1-8 was evaluated in vitro.

2. Results and discussion

Compound 1 was obtained as an amorphous powder, and the presence of OH (3229 cm⁻¹), conjugated carbonyl esters $(1697 \,\mathrm{cm}^{-1})$, and aromatic rings $(1596 \,\mathrm{and})$ 1512 cm⁻¹) were indicated by its IR spectrum. The molecular formula of compound 1 was determined to be C₂₈H₂₈O₁₀ by negative HR-ESI-MS. Absorption maximum at 210, 310, and 320 nm in its UV spectrum were indicative of a stilbene moiety [10]. The presence of (E)-resveratrol moiety in compound 1 was supported by its ¹H NMR signals (Table 1) at $\delta_{\rm H}$ 6.33 (1H, br s), 6.58 (1H, br s), 6.64 (1H, br s), 7.33 (2H, d, J = 8.5 Hz), 6.73 (2H, d, J = 8.5 Hz), 6.81 (1H, d, $J = 16.0 \,\mathrm{Hz}$), and 6.98 (1H, $J = 16.0 \,\mathrm{Hz}$). A detailed analysis of the

^{*}Corresponding author. Email: yushishan@imm.ac.cn

Figure 1. Structures of compounds 1-8.

NMR spectra of compound 1 with the help of ¹H-¹H COSY and HMBC experiments revealed the presence of a 2-methoxybenzoyl ester and a glucopyranoside unit, besides the resveratrol moiety. The presence of a downfield methylene signal at $\delta_{\rm C}$ 63.9 (C-6") in its ¹³C NMR spectrum established the attachment of a 2-methoxybenzoyl ester moiety at C-6" of glucose, which was further confirmed by the HMBC correlation (Figure 2) from H-6" at $\delta_{\rm H}$ 4.23 to C-7" at $\delta_{\rm C}$ 165.1. HMBC correlation between the anomeric proton at $\delta_{\rm H}$ 4.93 (H-1") and C-3 at $\delta_{\rm C}$ 158.6 indicated the location of a glucose unit at C-3 of the aglycone. Acid hydrolysis of compound 1, followed by the HPLC analysis [10,11], indicated the presence of D-glucose. The large coupling constant for the anomeric proton (8.0 Hz) indicated β -configuration for glucose. As a result, the structure of compound 1 was determined to be (E)-3,5,4'-trihydroxystilbene $3-O-[6-O-(2-methoxy)-benzoyl]-\beta-D$ glucopyranoside, named lysidiside S.

Compound **2** was obtained as a pale yellow powder, and its molecular formula, $C_{22}H_{24}O_{11}$, was indicated by HR-ESI-MS. The IR spectrum of compound **2** displayed absorption bands for OH (3401 cm⁻¹) and aromatic (1584 and 1521 cm⁻¹) moiety.

The ¹H NMR spectrum (Table 2) of compound 2 showed signals due to a 1,3,4trisubstituted phenyl group and a 1,2,4,5tetrasubstituted phenyl group. In addition, it showed signals attributed to three oxymethine protons at δ_H 4.67 (H-4), 4.81 (H-2), and 4.83 (H-1"), one methylene proton at δ 4.69 (H-7'), partially overlapped methylene and methine protons at $\delta_{\rm H}$ 3.20–3.70 and signals due to five OH protons between $\delta_{\rm H}$ 4.50 and 5.80, and two phenolic OH protons at $\delta_{\rm H}$ 9.01. Besides the carbon resonance corresponding to the above-mentioned phenyl units, the ¹³C NMR and DEPT spectra of compound 2 displayed carbon signals attributed to eight oxymethines between $\delta_{\rm C}$ 69.7 and 100.5, and two oxymethylenes at δ 66.99 (C-7') and 60.7 (C-6"). These spectroscopic data suggested that compound 2 was a flavanol glycoside with an aglycone possessing 16 carbons, similar to mopanolside (8) [2]. The proton signals at $\delta_{\rm H}$ 6.46 (1H, s, H-5') and 6.93 (1H, s, H-2') indicated the presence of a 1,2,4,5tetrasubstituted phenyl unit in ring B of compound 2, which was confirmed by HSQC and HMBC experiments (Figure 3). HMBC correlation between the anomeric proton at δ_H 4.83 and C-7 at δ_C 157.6

Downloaded At: 18:26 22 January 2011

Table 1. 1 H NMR (500 MHz) and 13 C NMR (125 MHz) spectral data for compounds 1, 3, and 4 in DMSO- 4 6.

		1		3		4
Position	$\delta_{\rm C}$	$\delta_{\rm H}$ (J in Hz)	$\delta_{\rm C}$	$\delta_{\rm H}$ (J in Hz)	$\delta_{\rm C}$	$\delta_{\rm H}$ (J in Hz)
1	139.3		139.3		139.3	
2	104.8	6.64 br s	104.7	6.65 br s	104.6	6.65 br s
3	158.6		158.6		158.6	
4	102.7	6.33 br s	102.5	6.35 br s	102.5	6.36 br s
5	158.4		158.5		158.5	
9	106.8	6.58 br s	106.8	6.58 br s	106.8	6.58 br s
α	125.2	6.81 d (16.0)	125.1	6.81 d (16.5)	125.1	6.84 d (16.5)
β	128.5	6.98 d (16.0)	128.5	7.00 d (16.5)	128.5	7.02 d (16.5)
1,	127.9		127.9		127.9	
2', 6'	$127.9 (2 \times)$	7.33 d (8.5)	$127.9 (2 \times)$	7.33 d (8.5)	$127.9 (2 \times)$	7.36 d (8.0)
3', 5'	$115.4 (2 \times)$	6.73 d (8.5)	$115.5 (2 \times)$	6.73 d (8.5)	115.5 $(2 \times)$	6.74 d (8.0)
4,	157.3		157.3		157.3	
1''	100.1	4.93 d (8.0)	100.0	4.94 d (8.0)	6.66	4.95 d (7.5)
2"	73.1	3.22 m	73.1	3.25 m (overlap)	73.1	3.25 m (overlap)
3"	76.2	3.30 m	76.3	3.35 m	76.3	3.32 m
4″	6.69	3.16 m	70.1	3.26 m (overlap)	70.1	3.16 m (overlap)
2"	73.6	3.25 m	73.7	3.72 m (overlap)	73.7	3.75 m (overlap)
//9	63.9	4.49 d (11.0)	64.1	4.58 d (11.5)	64.0	4.54 d (11.0)
		4.23 dd (12.0, 6.5)		4.18 dd (11.5, 7.0)		4.14 dd (12.0, 7.0)
1,,,	119.79		120.3		120.2	
2,,,	158.3		112.5	7.39 br s	131.5	7.79 d (8.5)
3///	112.5	7.07 d (7.5)	147.3		115.3	6.75 d (8.5)
4‴	133.5	7.44 dd (1.5, 7.5)	151.7		161.9	
2///	119.97	6.87 dd (7.5, 7.5)	115.2	6.75 d (8.0)	115.3	6.75 d (8.5)
///9	130.7	7.60 dd (7.5, 1.5)	123.6	7.46 dd (1.0, 8.0)	131.5	7.79 d (8.5)
///L	165.1		165.6		165.5	
OMe	55.7	3.75 s	55.5	3.75 s	I	

Figure 2. Key HMBC and ${}^{1}H-{}^{1}H$ COSY correlations of compound 1.

indicated the location of a glucose unit at C-7 of the aglycone. Acid hydrolysis of compound **2**, followed by HPLC analysis [2,10,11], indicated the presence of D-glucose. The large coupling constant for the anomeric proton $(8.0\,\mathrm{Hz})$ indicated β -configuration for glucose.

The stereochemistry of compound 2 was unequivocally determined on the basis of ¹H NMR spectrum and circular dichroism (CD) spectrum. Its ¹H NMR spectrum

Table 2. 1 H NMR (500 MHz) and 13 C NMR (125 MHz) spectral data for compound **2** in DMSO- d_6 .

Position	$\delta_{ m C}$	$\delta_{\rm H} (J {\rm in} {\rm Hz})$
2	71.8	4.81 d (9.5)
3	77.5	3.44 dd (9.5, 7.5)
4	68.0	4.67 dd (7.5, 7.5)
4a	120.0	
5	129.1	7.35 d (8.5)
6	109.9	6.66 dd (2.0, 8.5)
7	157.6	
8	103.2	6.50 d (1.5)
8a	154.3	
1'	122.6	
2'	112.6	6.93 s
3'	144.3	
4'	145.2	
5'	110.5	6.46 s
6'	125.5	
7'	66.99	4.69 s
1"	100.5	4.83 d (8.0)
2"	73.2	3.21 m
3"	76.5	3.25 m
4"	69.7	3.16 m
5"	77.7	3.32 m
6"	60.7	3.69 m, 3.46 m
4-OH		5.75 d (7.5)
3'-OH		9.00 br s
4'-OH		9.00 br s

Figure 3. Key HMBC correlations of compound 2.

showed an ABX system for: $\delta_{\rm H}$ 4.81 (1H, d, J=9.5 Hz, H-2), 4.67 (1H, dd, J=7.5, 7.5 Hz, H-4), and 3.44 (1H, dd, J=9.5, 7.5 Hz, H-3), which revealed the relative configuration of C-2–C-4, as shown in Figure 3. The absolute configuration of C-2 was determined from the CD spectrum. The negative Cotton effect at 283 nm revealed the *R* configuration for C-2 [12,13]. Thus, the structure of compound **2** was assigned as 7-O-(+)-peltogynol-β-D-glucopyranoside.

Compounds 3 and 4 have been detected in this plant and their structures were assigned on the basis of LC-MSⁿ and LC-HRMS analysis [9]. However, no spectral NMR data of them were reported earlier. In this paper, the spectral NMR data of compounds 3 and 4 are presented in Table 1. The known compounds 5 [14], 6 [15], 7 [16], and 8 [2] were identified by comparing their spectroscopic data with those of the literature values.

The *in vitro* antioxidant activities of compounds 1-8 were evaluated in a parallel experiment by measuring their inhibition activity on the liver microsomal lipid peroxidation induced by Fe^{2+} -Cysteine system *in vitro* with vitamin E as a positive control. Compounds 1, 3-5, and 7-8 showed clear activities at the concentration of 10^{-4} M (Table 3). Particularly, compound 3 also showed obvious antioxidant activity at concentrations of 10^{-5} and 10^{-6} M.

520

Table 3. Antioxidant activity of compounds 1-8.

	Restrainability (%)			
Compound	$10^{-4} \mathrm{M}$	$10^{-5} \mathrm{M}$	$10^{-6} \mathrm{M}$	
1	115.2	22.9	0	
2	41.7	0	0	
3	113.8	62.1	15.7	
4	115.9	35.3	0	
5	84.2	1.5	0	
6	36.1	2.1	0	
7	93.2	6.1	0	
8	80.9	12.2	0	
VE^a	81.5	33.4	0	

Note: ^a As positive control.

3. Experimental

3.1 General experimental procedures

Optical rotations were recorded on a Perkin-Elmer 241 automatic digital polarimeter. IR spectra were recorded on a Nicolet 5700 FT-IR spectrometer by a microscope transmission method. CD spectra were recorded on a JASCO-712 polarimeter. NMR spectra were obtained on an INOVA-500 spectrometer with solvent peaks being used as references. ESI-MS data were measured with an Agilent 1100 Series LC/MSD Trap mass spectrometer. HR-ESI-MS data were measured using a Micromass Autospec-Ultima ETOF spectrometer. Preparative HPLC was performed on a Shimadzu LC-6AD instrument with an SPD-10A detector, using YMC-Pack ODS-A $(250 \times 20 \,\text{mm}, 5 \,\mu\text{m})$. Polyamide $(30-60 \,\mu\text{m})$ mesh, Jiangsu Linjiang Chemical Reagents Factory, Lingjing, China) and ODS (50 µm, Merck, Darmstadt, Germany) were used for column chromatography.

3.2 Plant material

The bark of *L. brevicalyx* was collected from Guangxi Province, China, and identified by Professor Songji Wei in September 2006. A voucher specimen has been deposited in the Herbarium of the Department of Medicinal Plants, Institute of Materia Medica.

3.3 Extraction and isolation

The extraction and isolation procedures were successive to those reported previously [10]. The antioxidant fraction C_{2-1} (7.0 g) was submitted to an ODS column (50 µm, 300 g) and purified by preparative HPLC using 25% MeCN-H₂O (5 ml/min) to yield compounds 5 (89 mg, $t_R = 38 \text{ min}$) and **6** (72 mg, $t_R = 55 \text{ min}$). Fraction C_{2-2} (3.4 g) was submitted to an ODS column (50 μm, 100 g) and purified by preparative HPLC using 20% MeCN-H₂O (5 ml/min) to yield compounds 7 (33 mg, $t_R = 33 \text{ min}$) and 8 (90 mg, $t_R = 42 \text{ min}$). Subfraction C_3 (38.3 g) was submitted to an ODS column (50 µm, 200 g) and eluted with a gradient of MeOH $-H_2O$ (10:90-80:20), and further separated by Sephadex LH-20 (130 g, $1.5 \,\mathrm{m} \times 2 \,\mathrm{cm}$, eluted with MeOH) and preparative HPLC (45% MeOH-H₂O; 5 ml/min) to give compounds 1 (24 mg), 2 (61 mg), **3** (6 mg), and **4** (33 mg).

3.3.1 Lysidiside S (1)

White powder $(24 \,\mathrm{mg})$; $[\alpha]_{\mathrm{D}}^{20} + 53.60$ (c = 0.005, MeOH); UV (MeOH) λ_{max} 210, 310, 320 nm; IR ν_{max} 3229, 1697, 1596, 1512, 1463, 1434, 1370, 1246, 1076, 1016, 961, 752 cm⁻¹; ¹H and ¹³C NMR spectral data, see Table 1; HR-ESI-MS m/z 523.1612 [M - H]⁻ (calcd for $C_{28}H_{27}O_{10}$, 523.1604); ESI-MS m/z 523 [M - H]⁻.

3.3.2 7-O-(+)-Peltogynol- β -D-glucopy-ranoside (2)

Pale yellow powder (33 mg); $[\alpha]_D^{20} + 94.5$ (c = 0.06, MeOH); UV (MeOH) $\lambda_{\rm max}$ 201, 225, 280 nm; IR $\nu_{\rm max}$ 401, 2887, 1616, 1584, 1521, 1497, 1281, 1065, 1015, 888, 793 cm⁻¹; ¹H and ¹³C NMR spectral data, see Table 2; HR-ESI-MS m/z 463.1249 [M - H]⁻ (calcd for $C_{22}H_{23}O_{11}$, 463.1240); ESI-MS m/z 463 [M - H]⁻.

3.4 Antioxidant assays

The antioxidant assays were performed according to the reported procedures [10].

Vitamin E was selected as the positive control. The activities were determined by measuring the content of malondialdehyde (MDA), a compound produced during microsomal lipid peroxidation induced by Fe²⁺-cysteine. MDA was detected using the thiobarbituric acid method. The inhibition rate was calculated as $100\% - A_t/(A_p - A_c) \times 100$, where A_p , A_t , and A_c refer to the absorbance of Fe²⁺cysteine, test compound, and control (solvent only), respectively.

Acknowledgements

The research project was supported by the National Fund for Distinguished Young Scholars (No. 30625040) and National Key Basic R&D (973) Project (No. 2004CB518906). We thank the Department of Medicinal Analysis, Institute of Materia Medica, Chinese Academy of Medical Sciences for the measurements of IR, NMR, and MS spectra, and the Department of Pharmacology of our institute for antioxidation tests.

References

- [1] China Flora Editing Group of China Science Academy, *Flora of China* (Science Press, Beijing, 1988), Vol. 39, p. 204.
- [2] S. Gao, N. Feng, S.S. Yu, D.Q. Yu, and X.L. Wang, *Planta Med.* **70**, 1128 (2004).
- [3] S. Gao, G.M. Fu, L.H. Fan, S.S. Yu, and D.Q. Yu, J. Integr. Plant. Biol. 47, 759 (2005).

- [4] S. Gao, S.S. Yu, and D.Q. Yu, *Chin. Chem. Lett.* **15**, 313 (2004).
- [5] S. Gao, G.M. Fu, L.H. Fan, S.S. Yu, and D.Q. Yu, *Chin. J. Nat. Med.* **3**, 144 (2005).
- [6] S. Gao, J. Liu, G.M. Fu, Y.C. Hu, S.S. Yu, L.H. Fan, D.Q. Yu, and J. Qu, *Planta Med.* 73, 163 (2007).
- [7] Y.C. Hu, X.F. Wu, S. Gao, S.S. Yu, Y. Liu, J. Qu, J. Liu, and Y.B. Liu, *Org. Lett.* 8, 2269 (2006).
- [8] X.F. Wu, Y.C. Hu, S. Gao, S.S. Yu, Y.H. Pei, W.Z. Tang, and X.Z. Huang, J. Asian Nat. Prod. Res. 9, 471 (2007).
- [9] J. Qu, Y.C. Hu, J.B. Li, Y.H. Wang, J.L. Zhang, Z. Abliz, S.S. Yu, and Y.B. Liu, Rapid Commun. Mass Spectrum. 22, 755 (2008).
- [10] Y.C. Hu, S.G. Ma, J.B. Li, S.S. Yu, J. Qu, J. Liu, and D. Du, J. Nat. Prod. 71, 1800 (2008).
- [11] R. Oshima and J. Kumanotani, *Chem. Lett.* 10, 943 (1981).
- [12] S.E. Drewes and D.G. Roux, *J. Chem. Soc.* (C), 1644 (1966).
- [13] M.E. De Almeida, O.R. Gottlieb, J. Rego de Sousa, and M.A. Teixeira, *Phytochemistry* 13, 1225 (1974).
- [14] Y. Miyaichi, N. Nunomura, Y. Kawata, H. Kizu, T. Tomimori, T. Watanabe, A. Takano, and K.J. Malla, *Chem. Pharm. Bull.* 54, 136 (2006).
- [15] M. Ono, K. Mishima, T. Yamasaki, C. Masuoka, M. Okawa, J. Kinjo, T. Ikede, and T. Nohara, J. Nat. Med. 63, 86 (2009).
- [16] T. Kanchanapoom, R. Kasai, and K. Yamasaki, *Phytochemistry* 57, 1245 (2001).